Lagrange and Hermite Interpolation in Banach Spaces*

P. M. Prenter
Colorado State University, Fort Collins, Colorado 80521, and Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706

Communicated by Oved Shisha

Received April 10, 1970

Let f map a Banach space X into itself, and let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct points of X. Then there exists a polynomial $y(x)$ of degree $(n-1)$ which interpolates f at these points. Furthermore, $y(x)$ has a Lagrange representation

$$
y(x)=\sum_{i=1}^{n}\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1} \frac{w_{i}(x)}{\left(x-x_{i}\right)} f\left(x_{i}\right),
$$

where $w_{i}(x)=L_{i}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right), w_{i}^{\prime}\left(x_{i}\right)$ is the first Fréchet derivative of w_{i} at x_{i}, and $L_{i}, i=1,2, \ldots, n$, is an appropriately chosen n-linear operator. In an analogous manner, an Hermite polynomial $\bar{y}(x)$ of degree $(2 n-1)$ is derived, which interpolates f and f^{\prime} at $x_{1}, x_{2}, \ldots, x_{n}$. Finally, if X is a Hilbert space, the polynomials $y(x)$ and $\bar{y}(x)$ are shown to have simple representations in terms of inner products.

1. Introduction

Let X and Y be Banach spaces and let f be a function mapping X into Y. If X and Y are the real line R^{1}, the classical Lagrange and Hermite interpolation problems are, respectively, to find a polynomial $y(x)$ of degree ($n-1$) which interpolates f at n given distinct points $x_{1}, x_{2}, \ldots, x_{n}$, and to find a polynomial $\bar{y}(x)$ of degree $(2 n-1)$ which interpolates f at $x_{1}, x_{2}, \ldots, x_{n}$ while \bar{y}^{\prime} interpolates f^{\prime} at these points. In this paper we solve the Banach space analogs of these two problems, using polynomial operators. That is, we exhibit polynomials $y(x)$ and $\bar{y}(x)$, of degrees $n-1$ and $2 n-1$, such that y interpolates f at the n given distinct points $x_{1}, x_{2}, \ldots, x_{n}, \bar{y}$ interpolates f, and \bar{y}^{\prime} interpolates f^{\prime} at these points. In particular, we show that $y(x)$ has a Lagrange representation

$$
\begin{equation*}
y(x)=\sum_{i=1}^{n}\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1} \frac{w_{i}(x)}{\left(x-x_{i}\right)} f\left(x_{i}\right), \tag{1}
\end{equation*}
$$

[^0]where $w_{i}{ }^{\prime}\left(x_{i}\right)$ is the Frechet derivative of w_{i} at x_{i}, and $w_{i}(x)$ is the n-th degree polynomial
$$
w_{i}(x)=L_{i}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)
$$
L_{i} being an appropriately chosen n-linear operator. In the event X is a Hilbert space, the polynomials $y(x)$ and $\bar{y}(x)$ are shown to have simple representations in terms of inner products.

2. Polynomials in a Linear Space

Let X be a linear space over the field of real (complex) numbers. For each $k=1,2, \ldots$, let X^{k} denote the direct product

A k-linear operator M on X, is a function on X^{k} into a linear space Y which is linear and homogeneous in each of its arguments separately. That is, for each $i=1,2, \ldots, k$,

$$
\begin{aligned}
& M\left(x_{1}, x_{2}, \ldots, x_{i}+y_{i}, \ldots, x_{k}\right) \\
& \quad=M\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{k}\right)+M\left(x_{1}, x_{2}, \ldots, y_{i}, \ldots, y_{k}\right)
\end{aligned}
$$

and

$$
M\left(x_{1}, x_{2}, \ldots, a x_{i}, \ldots, x_{n}\right)=a M\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)
$$

A 0 -linear operator L_{0}, on X, is a constant function. That is, for some fixed $y \in Y, L_{0} x=y$ for all $x \in X$. We shall identify a 0 -linear operator L_{0} with its range so that $L_{0} x=L_{0}$ for all $x \in X$. In the event $x_{1}=x_{2}=\cdots=x_{k}=x$ we shall adopt the notation

$$
M\left(x_{1}, x_{2}, \ldots, x_{k}\right)=M x^{k}
$$

where M is a k-linear operator.
For $k=0,1,2, \ldots, n$, let L_{k} be a k-linear operator on X. Then the operator P on X into Y given by

$$
P(x)=L_{0}+L_{1} x+L_{2} x^{2}+\cdots+L_{n} x^{n}
$$

is called a polynomial of degree n on X.
Let $\mathscr{L}_{n}[X, Y], n=0,1,2, \ldots$, denote the set of n-linear operators on X into Y. If $X=Y$, we shall simply write $\mathscr{L}_{n}[X]$; we shall identify $\mathscr{L}_{0}[X]$ with X.

If $L \in \mathscr{L}_{n}[X, Y], n>1$, then for each $x \in X, L(x) \in \mathscr{L}_{n-1}[X, Y]$ is the $(n-1)$-linear operator defined by

$$
(L(x))\left(x_{2}, x_{3}, \ldots, x_{n}\right)=L\left(x, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

In general, if $n>k \geqslant 1$, then for each

$$
x_{1}, x_{2}, \ldots, x_{k} \in X, \quad L\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathscr{L}_{n-k}[X, Y]
$$

is the $(n-k)$-linear operator defined by

$$
\left(L\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)\left(x_{k+1}, \ldots, x_{n}\right)=L\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

If L is n-linear $(n>1)$, we shall let $\partial_{i} L$ denote the $(n-1)$-linear operator on X into $\mathscr{L}_{1}[X, Y]$ defined by

$$
\partial_{i} L\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=L\left(x_{1}, x_{2}, \ldots, x_{i-1}, \cdot, x_{i+1}, \ldots, x_{n}\right)
$$

where

$$
\left(L\left(x_{1}, x_{2}, \ldots, x_{i-1}, \cdot, x_{i+1}, \ldots, x_{n}\right)\right)(x)=L\left(x_{1}, x_{2}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right)
$$

In general, n-linear operators are not symmetric. That is, it need not be true that

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=L\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right)
$$

for all permutations $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $(1,2, \ldots, n)$. For this reason, in general,

$$
\partial_{i} L\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \neq L\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

Now let L be any n-linear operator and let $x_{1}, x_{2}, \ldots, x_{n}$ be any points of X. We define a function w on X into Y by

$$
w(x)=L\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)
$$

Clearly, $w(x)$ is a polynomial

$$
L_{n} x^{n}+L_{n-1} x^{n-1}+\cdots+L_{1} x+L_{0}
$$

of degree n on X, where $L_{n}=L$, and $L_{0}=(-1)^{n} L\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. For example, if L is bilinear,

$$
L\left(x-x_{1}, x-x_{2}\right)=L x^{2}-L\left(x_{1}, x\right)-L\left(x, x_{1}\right)+L\left(x_{1}, x_{2}\right)
$$

Thus $L_{2}=L, L_{0}=L\left(x_{1}, x_{2}\right)$, and $L_{1}=-L\left(x_{1}, \cdot\right)-L\left(\cdot, x_{2}\right)$.
An n-linear operator L is said to be bounded provided there exists a constant $M>0$ for which

$$
\left\|L\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leqslant M\left\|x_{1}\right\| \cdot\left\|x_{2}\right\| \cdot \cdots \cdot\left\|x_{n}\right\|
$$

Analogously to the 1 -linear case, it can be proved that an n-linear operator L is bounded if and only if it is continuous. Continuity of L is defined in terms of the product topology on X^{n}. If we define

$$
\|L\|=\inf \left\{M:\left\|L\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leqslant M\left\|x_{1}\right\| \cdot\left\|x_{2}\right\| \cdot \cdots \cdot\left\|x_{n}\right\|\right\}
$$

then

$$
\begin{equation*}
\|L\|=\sup \left\{\left\|L\left(x_{1}, x_{2}, \ldots, x_{n}\right):\right\| x_{i} \|=1, i=1,2, \ldots, n\right\} \tag{1}
\end{equation*}
$$

Clearly, whenever Y is a Banach space, $\mathscr{L}_{n}[X, Y]$, with the norm (1), is also a Banach space.

Finally, it will be useful to note [3] that $\mathscr{L}_{n}[X, Y]$ is isometric to $\mathscr{L}_{1}\left[X, \mathscr{L}_{n-1}[X]\right]$, which is isometric to $\mathscr{L}_{1}\left[X, \mathscr{L}_{1}\left[X, \mathscr{L}_{1}\left[X, \ldots, \mathscr{L}_{1}[X, Y] \cdots\right]\right]\right.$.

3. Fréchet Derivatives of Operators

Let f be a function mapping an open subset V of a Banach space X into a Banach space Y. Let $x_{0} \in V$. If there exists a linear operator $U \in \mathscr{L}_{1}[X, Y]$ such that

$$
\left\|f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)-U(\Delta x)\right\|=o(\|\Delta x\|)
$$

then $U=f^{\prime}\left(x_{0}\right)$ is called the Fréchet derivative of f at x_{0}. Equivalently,

$$
U(x)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{t}
$$

where the convergence is uniform on the sphere $\{x:\|x\|=1\}$. It follows from this definition that if L is a bounded, n-linear operator on X, and $f(x)=L x^{n}$, then $f^{\prime}(x)=\sum_{i=1}^{n} \partial_{i} L x^{n-1}$. In particular, if L is bilinear and $f(x)=L x^{2}$, then $f^{\prime}(x)=L(x, \cdot)+L(\cdot, x)$. If L is symmetric, then, clearly, $f^{\prime}(x)=n L x^{n-1}$.

We shall need the derivative of w. Let L be n-linear and let $x_{1}, x_{2}, \ldots, x_{n}$ be points of X. We let $\partial_{i} w$ or $w /\left(x-x_{i}\right)$ denote the operator on X into $\mathscr{L}_{i}[X, Y]$ defined by

$$
\partial_{i} w(z)=L\left(z-x_{1}, z-x_{2}, \ldots, z-x_{i-1}, \cdot, z-x_{i+1}, \ldots, z-x_{n}\right)
$$

We set

$$
\partial_{i} w(z)=\left(w /\left(x-x_{i}\right)\right)(z)=w(z) /\left(x-x_{i}\right)
$$

It should be noted that the operator $w /\left(x-x_{i}\right)$ is completely independent of the x in the denominator; the denominator $\left(x-x_{i}\right)$ is purely symbolic.

Theorem 3.1. Let L be a bounded, n-linear operator. Let $x_{1}, x_{2}, \ldots, x_{n} \in X$, and set

$$
w(x)=L\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)
$$

Then $w^{\prime}\left(x_{0}\right)=\sum_{i=1}^{n} w\left(x_{0}\right) /\left(x-x_{i}\right)$ and, in particular, $w^{\prime}\left(x_{i}\right)=w\left(x_{i}\right) /\left(x-x_{i}\right)=$ $\partial_{i} w\left(x_{i}\right)$.

Proof. Let x_{0} be a fixed point of X. Then, using the multilinearity and boundedness of L,

$$
\begin{aligned}
&\left\|w\left(x_{0}+\Delta x\right)-w\left(x_{0}\right)-\sum_{i=1}^{n} \frac{w\left(x_{0}\right)}{\left(x-x_{i}\right)}(\Delta x)\right\| \\
&= \| L\left(x_{0}-x_{1}+\Delta x, x_{0}-x_{2}+\Delta x, \ldots, x_{0}-x_{n}+\Delta x\right) \\
&-L\left(x_{0}-x_{1}, \ldots, x_{0}-x_{n}\right) \\
& \quad-\sum_{i=1}^{n} L\left(x_{0}-x_{1}, \ldots, x_{0}-x_{i-1}, \Delta x, x_{0}-x_{i+1}, \ldots, x_{0}-x_{n}\right) \| \\
& \leqslant \sum_{k=2}^{n} M_{k}\|\Delta x\|^{k}=o(\|\Delta x\|)
\end{aligned}
$$

where each M_{k} is a positive constant arising from $\|L\|$ and from the norms $\left\|x_{0}-x_{i}\right\|, i=1,2, \ldots, n$.

One can speak also of higher order Fréchet derivatives. If $f: X \rightarrow Y$ and if f^{\prime} exists on an open neighborhood V of x_{0} in X, then $f^{\prime \prime}\left(x_{0}\right)=\left(f^{\prime}\right)^{\prime}\left(x_{0}\right)$ is a linear operator on X into $\mathscr{L}_{1}[X, Y]$ for which

$$
\left\|f^{\prime}\left(x_{0}+\Delta x\right)-f^{\prime}\left(x_{0}\right)-f^{\prime \prime}\left(x_{0}\right)(\Delta x)\right\|=o(\|\Delta x\|)
$$

Thus, $f^{\prime \prime}\left(x_{0}\right) \in \mathscr{L}_{1}\left[X, \mathscr{L}_{1}[X, Y]\right]$ and, since $\mathscr{L}_{1}\left[X, \mathscr{L}_{1}[X, Y]\right]$ is isometric to $\mathscr{L}_{2}[X, Y]$, it follows that $f^{\prime \prime}\left(x_{0}\right)$ can be considered a bilinear operator on X into Y which is usually not symmetric. In general, $f^{(n)}\left(x_{0}\right)$, the n-th Fréchet derivative of f at x_{0}, is a linear operator on X into $\mathscr{L}_{n-1}[X, Y]$; so that $f^{(n)}\left(x_{0}\right)$ can be considered as belonging to $\mathscr{L}_{n}[X, Y]$.

Some examples of Fréchet derivatives are instructive. Let $X=Y=R^{n}$, the (real) Euclidean n-space. Then, if $f: X \rightarrow Y$ and for $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X$, $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, where $y_{i}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right), i=1,2, \ldots, n$, each f_{i} is a real-valued function of n real variables. It can then be shown that
if each f_{i} has continuous first partial derivatives on some open set V in X, then $f^{\prime}(x)$ exists on V and is given by the matrix

$$
\begin{aligned}
f^{\prime}(x) & =\left[\begin{array}{llll}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(x) \\
\vdots & & & \\
\frac{\partial f_{n}}{\partial x_{1}}(x) & & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(x)
\end{array}\right] \\
& =\left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right), \quad i, j=1,2, \ldots, n
\end{aligned}
$$

which is the gradient of f at x. Analogously, if each f_{i} has continuous second partials on some neighborhood U of x, then $f^{\prime \prime}(x)$ is given by the three-way matrix

$$
f^{\prime \prime}(x)=\frac{\partial^{2} f_{i}(x)}{\partial x_{j} \partial x_{k}}, \quad i, j, k=1,2, \ldots, n
$$

which is the Hessian of f at x.
More generally, one can show that if L is a bounded, n-linear operator on X, then $L^{(k)}(x)$ is a bounded, k-linear operator on X.

4. The Interpolation Problem - Existence

Let $c_{1}, c_{2}, \ldots, c_{n}$ be points of a Banach space X. The interpolation problem is that of finding, for each sequence $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of distinct points of X, a polynomial operator p which interpolates $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ at $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, so that $p\left(x_{i}\right)=c_{i}$. We shall prove that there always exists a polynomial of degree ($n-1$) which solves the interpolation problem.

To this end, let L be a bounded n-linear operator in $\mathscr{L}_{n}[X]$; let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct points of X and let $w(x)=L\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)$. Then w is a polynomial of degree n mapping X into X, and
$\frac{w(x)}{\left(x-x_{i}\right)}=\partial_{i} w(x)=L\left(x-x_{1}, x-x_{2}, \ldots, x-x_{i-1}, x-x_{i+1}, \ldots, x-x_{n}\right)$,
is a polynomial of degree $(n-1)$ which maps X into $\mathscr{L}_{1}[X]$. We have shown that $w^{\prime}(x)=\sum_{i=1}^{n} w(x) /\left(x-x_{i}\right)$, so that $w^{\prime}\left(x_{i}\right)=w\left(x_{i}\right) /\left(x-x_{i}\right)=\partial_{i} w\left(x_{i}\right)$ is a linear operator. Thus, should $w^{\prime}\left(x_{i}\right)$ be nonsingular for $i=1,2, \ldots, n$,
then since $l_{i}(x)=\left[w^{\prime}\left(x_{i}\right)\right]^{-1} w(x) /\left(x-x_{j}\right), l_{i}$ would be a linear and operatorvalued function having the property

$$
l_{i}\left(x_{j}\right)=\delta_{i j} I .
$$

Furthermore, for each $x_{0} \in X$, it is easily seen that $\left[l_{i}(x)\right]\left(x_{0}\right)=l_{i}(x) x_{0}$ is a polynomial of degree $(n-1)$. That is, we have proved

Theorem 4.1. If there exists an n-linear operator L such that $\left[w^{\prime}\left(x_{i}\right)\right]^{-1}$ exists for each $i=1,2, \ldots, n$, where

$$
w(x)=L\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)
$$

then the Lagrange polynomial $y(x)$ of degree $(n-1)$ given by

$$
y(x)=\sum_{i=1}^{n} l_{i}(x) c_{i}\left(=\sum_{i=1}^{n} l_{i}(x) f\left(x_{i}\right)\right)
$$

where $l_{i}(x)=\left[w^{\prime}\left(x_{i}\right)\right]^{-1} w(x) /\left(x-x_{i}\right)=\left[w^{\prime}\left(x_{i}\right)\right]^{-1} \partial_{i} w(x)$, solves the interpolation problem (interpolates the function f at the n distinct points $x_{1}, x_{2}, \ldots, x_{n}$ of X).

Thus, to solve the interpolation problem, it is enough to prove that such an n-linear operator exists. It would actually suffice to prove the existence of a family $\left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$ of n-linear operators having the property that $\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1}$ exists for $i=1,2, \ldots, n$, where $w_{i}(x)=L_{i}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)$. If this were the case, we could take

$$
y(x)=\sum_{i=1}^{n}\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1} \frac{w_{i}(x)}{\left(x-x_{i}\right)}\left(c_{i}\right)
$$

as our interpolating polynomial. We shall prove the existence of such a family of L_{i} 's.

Theorem 4.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct points of a Banach space X. Then for each $i=1,2, \ldots, n$ there exists an n-linear operator L_{i} for which $\left[w_{i}{ }^{\prime}\left(x_{i}\right)\right]^{-1}$ exists, where

$$
w_{i}(x)=L_{i}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)
$$

Furthermore, the L_{i} 's can be chosen so that $w_{i}{ }^{\prime}\left(x_{i}\right)=I$, where I is the identity operator in $\mathscr{L}_{1}[X]$.

Proof. We start with $i=1$. We must produce an n-linear operator L_{1} for which $w_{1}{ }^{\prime}\left(x_{1}\right)$ exists and is nonsingular, where

$$
w_{1}(x)=L_{1}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)
$$

640/4/4-6

Recall that if such an L_{1} exists, then

$$
\begin{aligned}
w_{1}^{\prime}\left(x_{1}\right) & =\frac{w_{1}\left(x_{1}\right)}{\left(x-x_{1}\right)}=\partial_{1} w_{1}\left(x_{1}\right) \\
& =L_{1}\left(\cdot, x_{1}-x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{n}\right)
\end{aligned}
$$

which belongs to $\mathscr{L}_{1}[X]$. Also, $L_{1}: X^{n-1} \rightarrow \mathscr{L}_{1}[X]$. With this in mind, let $X_{1 j}=\operatorname{span}\left\{x_{1}-x_{j}\right\}$. Since each $X_{1 j}(j=2,3, \ldots, n)$ is one-dimensional, there exist continuous projections $P_{1 j}$ of X onto $X_{1 j}$. Define

$$
\tilde{T}_{1}: X_{12} \times X_{13} \times \cdots \times X_{1 n} \rightarrow \mathscr{L}_{1}[X]
$$

by linearity, through the equation

$$
\tilde{T}_{1}\left(x_{1}-x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{n}\right)=I
$$

Then \tilde{T}_{1} is a bounded (continuous), $(n-1)$-linear operator in

$$
\mathscr{L}_{1}\left[X_{12} \times X_{13} \times \cdots \times X_{1 n}, Y\right]
$$

That is,

$$
\begin{aligned}
& \| \tilde{T}_{1}\left(a_{2}\left(x_{1}-x_{2}\right), a_{3}\left(x_{1}-x_{3}\right), \ldots, a_{n}\left(x_{1}-x_{n}\right) \mid\right. \\
& \quad=\left\|a_{2} a_{3} \cdots a_{n} \tilde{T}_{1}\left(x_{1}-x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{n}\right)\right\| \\
& \quad=\left|a_{2} a_{3} \cdots a_{n}\right| \cdot\|I\| \\
& \quad=\frac{1}{\left\|x_{1}-x_{2}\right\|\left\|x_{1}-x_{3}\right\| \cdots\left\|x_{1}-x_{n}\right\|}\left\|a_{1}\left(x_{1}-x_{2}\right)\right\| \cdots\left\|a_{n}\left(x_{1}-x_{n}\right)\right\|
\end{aligned}
$$

so that $\left\|\tilde{T}_{1}\right\|=1 /\left\|x_{1}-x_{2}\right\|\left\|x_{1}-x_{3}\right\| \cdots\left\|x_{1}-x_{n}\right\|$.
We extend \widetilde{T}_{1} to a continuous, $(n-1)$-linear operator $T_{1}: X^{n-1} \rightarrow \mathscr{L}_{1}[X]$ through the projections $P_{1 j}$. That is, we define

$$
T_{1}\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)=\check{T}_{1}\left(P_{12} y_{1}, P_{13} y_{2}, \ldots, P_{1 n} y_{n-1}\right)
$$

Since the projections $P_{1 j}$ are linear and continuous, it follows that T_{1} is $(n-1)$-linear and continuous. In particular, the map P,

$$
P: X^{n-1} \rightarrow X_{12} \times X_{13} \times \cdots \times X_{1 n}
$$

given by $P\left(y_{2}, y_{3}, \ldots, y_{n}\right)=\left(P_{12} y_{2}, P_{13} y_{3}, \ldots, P_{1 n} y_{n}\right)$ is continuous, so that the composition $\tilde{T}_{1} \circ P=T_{1}$, is continuous.

Now define the n-linear operator L_{1} by

$$
L_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left[T_{1}\left(y_{2}, y_{3}, \ldots, y_{n}\right)\right]\left(y_{1}\right)
$$

The n-linearity of L_{1} follows directly from the ($n-1$)-linearity of T_{1} and the fact that T_{1} is linear and operator-valued. The boundedness of T_{1} is also apparent. If $P_{1 k} y_{k}=a_{k}\left[\left(x_{1}-x_{k}\right) \| x_{1}-x_{k} \mid\right]$, then $\left\|P_{1 k} y_{k}\right\|=\left|a_{k}\right|$. Thus,

$$
\begin{aligned}
& L_{1}\left(y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}\right) \\
& \quad=\left[T_{1}\left(y_{2}, y_{3}, \ldots, y_{n}\right)\right]\left(y_{1}\right)=\left[\tilde{T}_{1}\left(P_{12} y_{2}, P_{13} y_{3}, \ldots, P_{1 n} y_{n}\right)\right]\left(y_{1}\right) \\
& \quad=\frac{a_{2} \cdot a_{3} \cdots a_{n}}{\left\|x_{1}-x_{2}\right\| \cdot\left\|x_{1}-x_{3}\right\| \cdots\left\|x_{1}-x_{n}\right\|}\left[\tilde{T}_{1}\left(x_{1}-x_{2}, \ldots, x_{1}-x_{n}\right)\right]\left(y_{1}\right) \\
& \quad=\frac{a_{2} \cdot a_{3} \cdots a_{n}}{\left\|x_{1}-x_{2}\right\| \cdot\left\|x_{1}-x_{3}\right\| \cdots\left\|x_{1}-x_{n}\right\|} y_{1} .
\end{aligned}
$$

Therefore, if $K=1 /\left\|x_{1}-x_{2}\right\| \cdot\left\|x_{1}-x_{3}\right\| \cdots\left\|x_{1}-x_{n}\right\|$, then

$$
\begin{aligned}
\left\|L_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\| & =K\left|a_{1}\right| \cdot\left|a_{2}\right| \cdots\left|a_{n}\right|\left\|y_{1}\right\| \\
& =K \cdot\left\|P_{12} y_{2}\right\| \cdot\left\|P_{13} y_{3}\right\| \cdots P_{1 n} y_{n}\|\cdot\| y_{1} \| \\
& \leqslant \bar{K}\left\|y_{1}\right\| \cdot\left\|y_{2}\right\| \cdots\left\|y_{n}\right\|,
\end{aligned}
$$

since each $P_{1 k}$ is a projection and $\left\|P_{1 k} y\right\|=\left\|P_{1 k}\right\| \cdot\|y\|$.
Now let $w_{1}(x)=L_{1}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)$. Since L_{1} is a bounded, n-linear operator, $w_{1}(x)$ is differentiable and

$$
\begin{aligned}
w_{1}^{\prime}\left(x_{1}\right) & =\frac{w\left(x_{1}\right)}{\left(x-x_{1}\right)} \\
& =L_{1}\left(\cdot, x_{1}-x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{n}\right) \\
& =\widetilde{T}_{1}\left(x_{1}-x_{2}, x_{1}-x_{3}, \ldots, x_{1}-x_{n}\right) \\
& =I
\end{aligned}
$$

Thus $w_{1}{ }^{\prime}\left(x_{1}\right)$ is a non-singular, linear operator.
A similar line of argument proves the existence, for each $i=1,2, \ldots, n$, of an n-linear operator L_{i} for which $w_{i}^{\prime}\left(x_{i}\right)=I$, where

$$
w_{i}(x)=L_{i}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right) .
$$

This completes the proof of the theorem.
As a direct result of Theorem 4.2 we have
Theorem 4.3. The interpolation problem can always be solved by a polynomial $y(x)$ of degree ($n-1$) having a Lagrange representation

$$
y(x)=\sum_{i=1}^{n} l_{i}(x) c_{i},
$$

where $l_{i}(x)=\left[w_{i}{ }^{\prime}\left(x_{i}\right)\right]^{-1} w_{i}(x) /\left(x-x_{i}\right)=\left[w_{i}{ }^{\prime}\left(x_{i}\right)\right]^{-1} \partial_{i} w_{i}(x)$ and $w_{i}(x)=$ $L_{i}\left(x-x_{1}, x-x_{2}, \ldots, x-x_{n}\right)$ for appropriately chosen n-linear operators $L_{1}, L_{2}, \ldots, L_{n}$.

In the event X is a Hilbert space with inner product (x, y), Theorem 4.2 also yields a representation theorem. Consider the projection $P_{1 j}$ of X onto $X_{1 j}$ given in the proof of Theorem 4.2. If X is a Hilbert space, then

$$
P_{1 j} y_{j}=\left(y_{j}, \frac{x_{1}-x_{j}}{\left\|x_{1}-x_{j}\right\|}\right) \frac{x_{1}-x_{j}}{\left\|x_{1}-x_{j}\right\|} .
$$

Thus

$$
L_{1}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\frac{\left(y_{2}, x_{1}-x_{2}\right) \cdot\left(y_{3}, x_{1}-x_{3}\right) \cdots\left(y_{n}, x_{1}-x_{n}\right)}{\left\|x_{1}-x_{2}\right\|^{2} \cdot\left\|x_{1}-x_{3}\right\|^{2} \cdots\left\|x_{1}-x_{n}\right\|^{2}} I\left(y_{1}\right)
$$

In particular, since $w_{1}^{\prime}\left(x_{1}\right)=I$,

$$
\begin{aligned}
l_{1}(x) & =I \circ \frac{w_{1}(x)}{\left(x-x_{1}\right)} \\
& =L_{1}\left(\cdot, x-x_{2}, x-x_{3}, \ldots, x-x_{n}\right) \\
& =\frac{\left(x-x_{2}, x_{1}-x_{2}\right) \cdot\left(x-x_{3}, x_{1}-x_{3}\right) \cdots\left(x-x_{n}, x_{1}-x_{n}\right)}{\left\|x_{1}-x_{2}\right\|^{2} \cdot\left\|x_{1}-x_{3}\right\|^{2} \cdots x_{1}-x_{n} \|^{2}} I .
\end{aligned}
$$

Analogously, one can prove that

$$
l_{j}(x)=\left[\prod_{\substack{k=1 \\ k \neq j}}^{n}\left(x-x_{k}, x_{j}-x_{k}\right)\right]\left[\prod_{\substack{k=1 \\ k \neq j}}^{n}\left\|x_{j}-x_{k}\right\|\right]^{-1} I .
$$

Thus we arrive at
Theorem 4.4. Let X be a Hilbert space with inner product (x, y) and let $c_{1}, c_{2}, \ldots, c_{n}$ be points of X. Then, for any distinct points $x_{1}, x_{2}, \ldots, x_{n}$ of X, the polynomial $y(x)$ of degree $n-1$, given by

$$
y(x)=\sum_{i=1}^{n} \frac{\pi_{i}(x)}{\pi_{i}\left(x_{i}\right)} c_{i},
$$

where

$$
\pi_{i}(x)=\prod_{\substack{k=1 \\ k \neq i}}^{n}\left(x-x_{k}, x_{i}-x_{k}\right)
$$

satisfies $y\left(x_{i}\right)=c_{i}, i=1,2, \ldots, n$.
This theorem is evident by inspection; however, it is interesting to note how it followed naturally from the theory of Theorems 4.2 and 4.3.

5. Hermite Interpolation in Banach Spaces

Recall the classical Hermite polynomial $y(x)$ of degree $(2 n-1)$ which interpolates a real-valued function f of a real variable at the n distinct points $x_{1}, x_{2}, \ldots, x_{n}$ and for which $y^{\prime}(x)$ interpolates f^{\prime} at these points. This $y(x)$ is given by the formula

$$
y(x)=\sum_{i=1}^{n}\left\{H_{i}(x) f\left(x_{i}\right)+\bar{H}_{i}(x) f^{\prime}\left(x_{i}\right)\right\},
$$

where $H_{i}(x)=\left[1-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right] l_{i}^{2}(x)$, and $\bar{H}_{i}(x)=\left(x-x_{i}\right) l_{i}{ }^{2}(x)$. Here $l_{i}(x)$ is the polynomial $w(x) / w^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)$ occurring in the classical Lagrange formula, and $w(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)$. It follows that

$$
H_{i}\left(x_{j}\right)=\delta_{i j}=\bar{H}_{i}^{\prime}\left(x_{j}\right),
$$

and

$$
H_{i}^{\prime}\left(x_{j}\right)=0=\bar{H}_{i}\left(x_{j}\right), \quad \text { for } \quad i, j=1,2, \ldots, n .
$$

Now suppose X is a Banach space and f is a function from X into X which has a continuous Fréchet derivative at n distinct points $x_{1}, x_{2}, \ldots, x_{n}$ of X. Referring to Theorem 4.2, let $l_{i}(x)=\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1} w_{i}(x) /\left(x-x_{i}\right)=$ $\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1} \partial_{i} w_{i}(x)$. Since $l_{i}(x)$ is linear and operator-valued, $l_{1}^{2}(x)=l_{i}(x) \circ l_{i}(x)$, being the composition of two linear operators, is itself linear and operatorvalued. Furthermore, $l_{i}^{\prime}: X \rightarrow \mathscr{L}_{1}\left[X, \mathscr{L}_{1}[X]\right]$ so that $\left[l_{i}^{\prime}(x)\right](y)$ is linear and operator-valued. It is thus obvious that, for each $x \in X, l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)$ is linear and operator-valued. We now define the Banach space analog of the above function $H_{i}(x)$ to be the linear operator-valued function on X :

$$
H_{i}(x)=\left[I-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right] l_{i}^{2}(x),
$$

where I is the identity in $\mathscr{L}_{1}[X]$. Since $l_{i}\left(x_{j}\right)=\delta_{i j} I$, it is evident that

$$
\begin{equation*}
H_{i}\left(x_{j}\right)=\delta_{i j} I . \tag{1}
\end{equation*}
$$

Furthermore, we can show that $H_{i}^{\prime}\left(x_{j}\right)=0$, the zero linear operator from X to $\mathscr{L}_{1}[X]$, for $i, j=1,2, \ldots, n$. A proof of this requires some basic facts about Fréchet derivatives [5].
If A is a linear operator from X into Y, then $A^{\prime}(x)=A$ for all $x \in X$. If $F: X \rightarrow Y$ and $F(x)=L_{0}$, a constant, for all $x \in X$, then $F^{\prime}(x)=0 \in \mathscr{L}_{1}[X, Y]$ for all $x \in X$. Let X, Y and Z be Banach spaces, and let $F: X \rightarrow Y$ and $G: Y \rightarrow Z$ be functions such that F is differentiable at x_{0} and G is differentiable at $y_{0}=F\left(x_{0}\right)$. Then $G F$ is differentiable at x_{0}, and $(G F)^{\prime}\left(x_{0}\right)=$ $G^{\prime}\left(y_{0}\right) F^{\prime}\left(x_{0}\right)$. In particular, if G is linear, $(G F)^{\prime}\left(x_{0}\right)=G F^{\prime}\left(x_{0}\right)$. Finally,

Lemma 5.1. Let A and B be functions from X into $\mathscr{L}_{1}[X]$ which are bounded, linear and operator-valued. If both A and B are differentiable at x_{0} and if $F(x)=A(x) B(x)$, then

$$
F^{\prime}\left(x_{0}\right)(x)=A\left(x_{0}\right) B^{\prime}\left(x_{0}\right)(x)+A^{\prime}\left(x_{0}\right)(x) B\left(x_{0}\right)
$$

Proof. The proof follows directly from the continuity of A and B at x_{0} and the definition of the Fréchet derivative.

Now let $A_{i}(x)=I-2 l_{i}{ }^{\prime}\left(x_{i}\right)\left(x-x_{i}\right), B(x)=l_{i}{ }^{2}(x)$. Then $A_{i}{ }^{\prime}\left(x_{0}\right)=-2 l_{i}{ }^{\prime}\left(x_{i}\right)$ since I and $-2 l_{i}^{\prime}\left(x_{i}\right)\left(x_{i}\right)$ are constant and $l_{i}^{\prime}\left(x_{i}\right)$ is a linear operator. Using Lemma 5.1 we see that

$$
B_{i}{ }^{\prime}\left(x_{j}\right)(x)=l_{i}\left(x_{j}\right) l_{i}^{\prime}\left(x_{j}\right)(x)+l_{i}^{\prime}\left(x_{j}\right)(x) l_{i}\left(x_{j}\right)
$$

so that

$$
B_{i}^{\prime}\left(x_{j}\right)(x)=\left\{\begin{array}{lc}
0 \in \mathscr{L}_{1}[X] & \text { if } j \neq i \\
-2 l_{i}^{\prime}\left(x_{i}\right)(x) & \text { if } j=i .
\end{array}\right.
$$

But $H_{i}(x)=A_{i}(x) B_{i}(x)$ so that, invoking again Lemma 5.1,

$$
\begin{aligned}
H_{i}{ }^{\prime}\left(x_{j}\right)(x)= & A_{i}{ }^{\prime}\left(x_{j}\right)(x) B_{i}\left(x_{j}\right)+A_{i}\left(x_{j}\right) B_{i}{ }^{\prime}\left(x_{j}\right)(x) \\
= & -2 l_{i}^{\prime}\left(x_{i}\right)(x) l_{i}{ }^{2}\left(x_{j}\right)+\left[I-2 l_{i}^{\prime}\left(x_{i}\right)\left(x_{j}-x_{i}\right)\right] B_{i}{ }^{\prime}\left(x_{j}\right)(x) \\
= & -2 l_{i}^{\prime}\left(x_{i}\right)(x) \delta_{i j} I \\
& +\left[I-2 l_{i}^{\prime}\left(x_{i}\right)\left(x_{i}-x_{j}\right)\right]\left[\left(\delta_{i j} I\right) l_{i}^{\prime}\left(x_{i}\right)(x)+l_{i}^{\prime}\left(x_{j}\right)(x)\left(\delta_{i j} I\right)\right] \\
= & \left\{\begin{array}{l}
0 \in \mathscr{L}_{1}[X] \quad \text { if } j \neq i, \\
2 l_{i}^{\prime}\left(x_{i}\right)(x)-2 l_{i}^{\prime}\left(x_{i}\right)(x)=0 \in \mathscr{L}_{1}[X] \quad \text { if } j=i .
\end{array}\right.
\end{aligned}
$$

That is, $H_{i}{ }^{\prime}\left(x_{j}\right)=0 \in \mathscr{L}_{1}\left[X, \mathscr{L}_{1}[X]\right]$ for all $i, j=1,2, \ldots, n$.
If $\bar{H}_{i}(x)$ were a polynomial of degree $2 n-1$ from X into X for which $\bar{H}_{i}\left(x_{j}\right)=0$ for all $i, j=1,2, \ldots, n$, and for which $\bar{H}_{i}{ }^{\prime}\left(x_{j}\right)=\delta_{i j} I$, then

$$
\begin{equation*}
y(x)=\sum_{i=1}^{n}\left\{H_{i}(x) f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) \bar{H}_{i}(x)\right\} \tag{2}
\end{equation*}
$$

would be a polynomial of degree $2 n-1$ interpolating f at $x_{1}, x_{2}, \ldots, x_{n}$, with y^{\prime} interpolating f^{\prime} at these points. This follows directly from

$$
y^{\prime}(x)=\sum_{i=1}^{n} H_{i}^{\prime}(x) f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) \bar{H}_{i}^{\prime}(x)
$$

Note that, since $H_{i}(x) \in X$ and $f^{\prime}\left(x_{i}\right) \in \mathscr{L}_{1}[X], f^{\prime}\left(x_{i}\right)$ must precede $H_{i}(x)$ in formula (2). Looking at the proof of Theorem 4.2, we find it can be readily
adapted to produce a $(2 n-1)$-linear operator L_{i}, for each $i=1,2, \ldots, n$, for which $\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1}$ exists and equals I, where

$$
\begin{aligned}
w_{i}(x) & =L_{i}\left(x-x_{1}, x-x_{1}, x-x_{2}, x-x_{2}, \ldots, x-x_{i}, \ldots, x-x_{n}, x-x_{n}\right) \\
& =L_{i}\left(\left(x-x_{1}\right)^{2},\left(x-x_{2}\right)^{2}, \ldots,\left(x-x_{i}\right), \ldots,\left(x-x_{n}\right)^{2}\right) .
\end{aligned}
$$

It follows easily that

$$
\bar{H}_{i}(x)=\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1} w_{i}(x)=w_{i}(x)
$$

obeys the following relations:

$$
\begin{aligned}
\bar{H}_{i}\left(x_{j}\right) & =0 \quad \text { for all } \quad i, j=1,2, \ldots, n, \\
\bar{H}_{i}^{\prime}\left(x_{j}\right) & =\delta_{i j} I .
\end{aligned}
$$

Thus we arrive at
Theorem 5.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct points of a Banach space X and let $f: X \rightarrow X$ be differentiable at $x_{1}, x_{2}, \ldots, x_{n}$. Then there exists a polynomial y of degree $(2 n-1)$,

$$
\begin{equation*}
y(x)=\sum_{i=1}^{n}\left\{H_{i}(x) f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) \bar{H}_{i}(x)\right\} \tag{3}
\end{equation*}
$$

which interpolates f at $x_{1}, x_{2}, \ldots, x_{n}$, with $y^{\prime}(x)$ interpolating f^{\prime} at these points. Furthermore,

$$
H_{i}(x)=\left[I-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right] l_{i}^{2}(x), \quad \text { and } \quad \bar{H}_{i}(x)=\left[w_{i}^{\prime}\left(x_{i}\right)\right]^{-1} w_{i}(x)
$$

where $w_{i}(x)=L_{i}\left(\left(x-x_{1}\right)^{2},\left(x-x_{2}\right)^{2}, \ldots,\left(x-x_{i}\right), \ldots,\left(x-x_{n}\right)^{2}\right), L_{i}$ being an appropriately chosen $(2 n-1)$-linear operator. I is the identity in $\mathscr{L}_{1}[X]$.

In the event X is a Hilbert space, we can obtain a simple representation of $y(x)$ in terms of inner products. First, one can show

$$
\bar{H}_{i}(x)=\frac{\pi_{i}{ }^{2}(x)}{\pi_{i}^{2}\left(x_{i}\right)}\left(x-x_{i}\right), \quad \text { where } \quad \pi_{i}(x)=\prod_{\substack{k=1 \\ k \neq i}}^{n}\left(x-x_{k}, x_{i}-x_{k}\right)
$$

and (,) denotes inner product. Then, since $l_{i}(x)=\pi_{i}(x) / \pi_{i}\left(x_{i}\right) I$, it follows upon differentiation that

$$
l_{i}^{\prime}(x)(y)=\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{\pi_{i}(x) \cdot\left(y, x-x_{j}\right)}{\left(x-x_{j}, x_{i}-x_{j}\right) \cdot \pi_{i}\left(x_{i}\right)} I .
$$

Thus

$$
l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)=\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{\left(x-x_{i}, x_{i}-x_{j}\right)}{\left(x-x_{j}, x_{i}-x_{j}\right)} I
$$

and

$$
H_{i}(x)=\left[1-\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{\left(x-x_{i}, x_{i}-x_{j}\right)}{\left(x-x_{j}, x_{i}-x_{j}\right)}\right] \frac{\pi_{i}^{2}(x)}{\pi_{i}^{2}\left(x_{i}\right)} I .
$$

Therefore, we arrive at
Theorem 5.3. Let X be a Hilbert space with inner product (x, y) and let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct points of X. Then the polynomial of degree $2 n-1$ given by

$$
y(x)=\sum_{i=1}^{n}\left\{H_{i}(x) f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) \bar{H}_{i}(x)\right\},
$$

where

$$
H_{i}(x)=\left[1-\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{\left(x-x_{i}, x_{i}-x_{j}\right)}{\left(x-x_{j}, x_{i}-x_{j}\right)}\right] \frac{\pi_{i}^{2}(x)}{\pi_{i}^{2}\left(x_{i}\right)} I
$$

and

$$
\bar{H}_{i}(x)=\left[\frac{\pi_{i}^{2}(x)}{\pi_{i}^{2}\left(x_{i}\right)}\right]\left(x-x_{i}\right)
$$

interpolates the function $f: X \rightarrow X$, while y^{\prime} interpolates f^{\prime} at $x_{1}, x_{2}, \ldots, x_{n}$.

References

1. Philp J. Davis, "Interpolation and Approximation," Blaisdell, New York, 1956.
2. Mahlon M. Day, "Normed Linear Spaces," Springer-Verlag, Berlin, 1962.
3. M. K. Gavurin, On k-ple operators in Banach spaces, Dokl. Akad. Nauk SSSR 22 (1939), 547-51.
4. F. B. Hildebrand, "Introduction to Numerical Analysis," McGraw-Hill, New York, 1956.
5. L. V. Kantorovich and G. P. Akilov, "Functional Analysis in Normed Spaces," MacMillan, New York, 1964.
6. P. M. Prenter, A Weierstrass theorem for real separable Hilbert spaces, J. Approximation Theory 3 (1970), 341-351.
7. P. M. Prenter, Matrix Representations of Polynomial Operators, MRC Technical Report \# 929, U. of Wisconsin, August, 1968.

[^0]: * Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No.: DA-31-124-ARO-D-462.

