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Let f map a Banach space X into itself, and let x, , x; ,..., X, be distinct points
of X. Then there exists a polynomial y(x) of degree (» — 1) which interpolates
f at these points. Furthermore, y(x) has a Lagrange representation

i id , 1 w,(x) .

¥(x) zl[w, Gl o S,
where wi(x) = L{x — Xy, X — X3 ,..., X — X,), w;'(x;) is the first Fréchet deriva-
tive of w,at x; ,and L; ,i =1, 2,..., n, is an appropriately chosen »-linear operator.
In an analogous manner, an Hermite polynomial 5(x) of degree (2n — 1) is
derived, which interpolates f and f’ at x,, x,,..., X, . Finally, if X is a Hilbert
space, the polynomials y(x) and y(x) are shown to have simple representations
in terms of inner products.

1. INTRODUCTION

Let X and Y be Banach spaces and let f be a function mapping X into Y.
If X and Y are the real line R!, the classical Lagrange and Hermite inter-
polation problems are, respectively, to find a polynomial y(x) of degree
(n — 1) which interpolates f at n given distinct points x; , X, ,..., X, , and to
find a polynomial y(x) of degree (2n — 1) which interpolates fat x; , x5 ,..., X,,
while y" interpolates f' at these points. In this paper we solve the Banach
space analogs of these two problems, using polynomial operators. That is,
we exhibit polynomials y(x) and y(x), of degrees n — 1 and 2n — 1, such
that y interpolates f at the »n given distinct points x,, X, ,..., X, , J inter-
polates £, and 7’ interpolates f' at these points. In particular, we show that
y(x) has a Lagrange representation

wi(x

o =Y [wi'(xm—l——)f)f(xi), (1)
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where w,'(x;) is the Fréchet derivative of w; at x; , and w;(x) is the n-th degree
polynomial
wi(x) = Li(x — X3, X — Xg 5oy X — Xp),

L, being an appropriately chosen n-linear operator. In the event X is a
Hilbert space, the polynomials y(x) and y(x) are shown to have simple
representations in terms of inner products.

2. POLYNOMIALS IN A LINEAR SPACE

Let X be a linear space over the field of real (complex) numbers. For each
k=1,2,.., let X* denote the direct product

X X X X -+ X X.

k times

A k-linear operator M on X, is a function on X* into a linear space Y which
is linear and homogeneous in each of its arguments separately. That is, for
eachi=1,2,..,k,

M(Xy , Xo geeey Xi & Vigeers Xi)
== M(X], Xg y0eey Xi soees X)) -+ M(X1 5 Xg 5eees Vi seees Vi)
and

My, Xg yerey @X5 yorey Xp) = AM(Xy 5 Xg yeeey Xi 5evey Xp)e

A O-linear operator L, , on X, is a constant function. That is, for some fixed
ye Y, Lyx = y for all x e X. We shall identify a O-linear operator L, with
its range so that Lyx = Lyforall xe X. Intheevent x; = x, = - = x, = x
we shall adopt the notation

M(xl > X9 5000y xk) = M-xk,

where M is a k-linear operator.
Fork =0, 1, 2,..., n, let L, be a k-linear operator on X. Then the operator
P on X into Y given by

P(x) = Ly Lyx 4 Lyx® + =+ 4 L,x*

is called a polynomial of degree n on X.

Let ZIX, Y], n=0,1,2,.., denote the set of n-linear operators on X
into Y. If X = Y, we shall simply write %,[X]; we shall identify Z,[X]
with X.
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If Le Z,[X, Y], n>1, then for each xe X, L{x)e %, ,[X, Y] is the
(n — 1)-linear operator defined by
(LOOY(Xz 5 X3 5eees Xn) = L(X, X5, X3 5ueey Xp)-
In general, if n > k > 1, then for each
X1y Xo yeeey X5 € X, L(x;, X5 5oy X)) € L[ X, Y]
is the (n — k)-linear operator defined by
(LOxcp s X yerey XD Xpga 5eees Xn) = L(xp 5 Xy yeey Xp)-

If L is n-linear (n > 1), we shall let ¢,L denote the (n — 1)-linear operator
on X into #[X, Y] defined by

8zl‘('xl > Xg seeny Xiq 5 X1 5eees xn) = L(xl 3 Xg seees Xiog 5 "5 Xig1 seees xn)’
where
(L(xl ) x2 genes Xj1 s xi+1 3mees x'n))(x) = L(xl B x2 seeey xi—l s X, xi+1 gesey xn)-

In general, n-linear operators are not symmetric. That is, it need not be true
that

L(xl > Xg serey x’n) = L(xil » xiz [ AR ] xin)
for all permutations (i, , 75 ,..., i) of (1, 2,..., n). For this reason, in general,
aiL(xl ’ x2 seves Xio1 s Xi41 soees xn) # L(xl s x2 seres xi-l 3 xi+1 3eces -xn)'

Now let L be any r-linear operator and let x, , x,,..., X, be any points
of X. We define a function w on X into Y by

w(x) = L(X — X1, X — X o0 X — X,p).
Clearly, w(x) is a polynomial
Lnxn + Ln_lxn-I "'I“ b + le + L()

of degree n on X, where L, =L, and Ly = (—1)" L{x, , X, ,..., X,). For
example, if L is bilinear,

L(x — x;,x — x3) = Lx?* — L(xy, x) — L(x, x;) + L(x; , X3).

Thus L, = L, Ly = L(x;, xp), and L, = —L(x,, -) — L(-, x,).
An n-linear operator L is said to be bounded provided there exists a
constant M > 0 for which

1 L(xy, X ey Xl < MU X Hxa )l oo - X U
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Analogously to the 1-linear case, it can be proved that an n-linear operator
L is bounded if and only if it is continuous. Continuity of L is defined in
terms of the product topology on X™. If we define
LY = inf{M | L(xy, Xg ooy Xl <M xg [ I X2 )] o - X

then

I Ll = sup{ll L(X1, Xp 5oy Xp) i Xl = 1, i = 1, 2,..., m}. 1)
Clearly, whenever Y is a Banach space, %, [X, Y], with the norm (1), is also
a Banach space.

Finally, it will be useful to note [3] that Z,[X, Y] is isometric to
ZIX, Z,_1[X]], which is isometric to H[X, X, L4lX,..., Z[X, Y1 1]

3. FRECHET DERIVATIVES OF OPERATORS

Let f be a function mapping an open subset V' of a Banach space X into
a Banach space Y. Let x4 € V. If there exists a linear operator U € %[X, Y]
such that

1/ (xo + 4x) — f(xo) — Ux)l| = o( dx [I),

then U = f'(x,) is called the Fréchet derivative of f at x, . Equivalently,

fxo + 1x) — f(x0)
t Ed

U(x) = lim

where the convergence is uniform on the sphere {x : || x || = 1}. It follows
from this definition that if L is a bounded, »-linear operator on X, and
f(x) = Lx", then f'(x) = ¥, &Lx"1. In particular, if L is bilinear and
f(x) = Lx2, then f'(x) = L(x, -) + L(-, x). If L is symmetric, then, clearly,
f'(x) = nLx".

We shall need the derivative of w. Let L be n-linear and let x; , x; ,..., X,
be points of X. We let o,w or w/(x — x,) denote the operator on X into
Z[X, Y] defined by

OW(Z) = L(Z — X1 ,2 — Xg ooy Z — Xjq 5 s Z = Xipg yeees Z — Xp)-

We set
ow(z) = (W/(x — x)z) = w(2)/(x — x;).

It should be noted that the operator w/(x — x;) is completely independent of
the x in the denominator; the denominator (x — x;) is purely symbolic.
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THEOREM 3.1. Let L be a bounded, n-linear operator. Let x, , X, ,..., X, € X,
and set

W(X) = L(X — X1, X — Xz yeery X — Xp).

Then w'(x,) = Y5y w(xo)/(x — x;) and, in particular, w'(x;) = w(x)/(x - x;) =
o;W(x,).

Proof. Let x, be a fixed point of X. Then, using the multilinearity and
boundedness of L,

o+ Ax) = g — 3 ()|
= ” L(xy — x, + 4Ax, xy — x5 + Ax,..., Xg — x, + 4x)

- L(x() — X150 Xo T xn)

n
— Y L(Xg — Xy 5oy Xog — Xy, AX, Xog — Xigg seeer Xo — Xp)
i=1

< Y Myl dx|F = of| 4x]),
k=2

where each M, is a positive constant arising from || L || and from the norms
Ixg — x:{l, i =1, 2,...,n.

One can speak also of higher order Fréchet derivatives. If f: X — Y and
if f* exists on an open neighborhood ¥ of x, in X, then f"(x,) = (') (x,)
is a linear operator on X into Z[X, Y] for which

1" (o + dx) — f(x0) — f"(xo)(dx)l| = o(ll x }).

Thus, f"(x,) € HZ[X, ZI[X, Y]] and, since Z[X, Z[X, Y]] is isometric to
Z,[X, Y], it follows that f”(x,) can be considered a bilinear operator on X
into Y which is usually not symmetric. In general, f™)(x,), the n-th Fréchet
derivative of f at x,, is a linear operator on X into %, _,[X, Y]; so that
f™(x,) can be considered as belonging to %, [X, Y]

Some examples of Fréchet derivatives are instructive. Let X = ¥ = R",
the (real) Euclidean rn-space. Then, if f: X — Y and for (x; , x5 ,..., x,) € X,
S (X1 5 Xa 5eees X)) = (P15 Vo 5oy Yu), Where y; = fi(xy , X5 500, Xp), i = 1, 2,.., 1,
each f; is a real-valued function of » real variables. It can then be shown that



424 PRENTER

if each f; has continuous first partial derivatives on some open set ¥ in X,
then f'(x) exists on ¥ and is given by the matrix

o of % ]
8_x1— (x) 6—x2 ox, (x)
o ka3 ofe
fllx)= 8x1 ) X, x) - ox, )
af () e |

( Y (x)) Lji=12,..,n,

ox;

which is the gradient of fat x. Analogously, if each f; has continuous second
partials on some neighborhood U of x, then f"(x) is given by the three-way
matrix

v OAX) C
f (x) - axj axky L s k= ], 2,..., n,

which is the Hessian of fat x.
More generally, one can show that if L is a bounded, »-linear operator
on X, then L™*)(x) is a bounded, k-linear operator on X.

4, THE INTERPOLATION PROBLEM — EXISTENCE

Let ¢, ¢y ..., ¢, be points of a Banach space X. The interpolation problem
is that of finding, for each sequence {x; , X, ,..., x,} of distinct points of X,
a polynomial operator p which interpolates {c, , €3 5., Cn} at {Xy 5 X3 5ees Xp}s
so that p(x,) = ¢; . We shall prove that there always exists a polynomial of
degree (n — 1) which solves the interpolation problem.

To this end, let L be a bounded n-linear operator in Z,[X]; let x; , X5 ,..., X
be distinct points of X and let w(x) = L(x — x; , X — X3 ,..., X — Xx,,). Then
w is a polynomial of degree » mapping X into X, and

w(x
(x—i—lg = 0W(x) = L(X — X1, X — Xg,0e0, X = X 15 X — Xiiq 3000y X — Xp),
is a polynomial of degree (n — 1) which maps X into .%,[X]. We have shown
that w'(x) = X, wx)/(x — x), so that w'(x;) = w(x)/(x — x;) = &; w(xl)
is a linear operator. Thus, should w'(x;) be nonsingular for i =1, 2,..



LAGRANGE AND HERMITE INTERPOLATION IN BANACH SPACES 425

then since /,{x) = [w'(x;)]™2 w(x)/(x — x;), /; would be a linear and operator-
valued function having the property
Ii(x;) = 84l

Furthermore, for each x; € X, it is easily seen that [/,(x)](x,) = /,(x) x, is a
polynomial of degree (n — 1). That is, we have proved

THEOREM 4.1. If there exists an n-linear operator L such that [w'(x)]™!
exists for each i = 1, 2,..., n, where

W) = L{(X — X1, X — X5 5000y X — Xy),

then the Lagrange polynomial y(x) of degree (n — 1) given by

ﬂm=§wmeéummy

i=1

where L(x) = [W(x)] wx)/(x — x;) = [W(x)]™ 0,w(x), solves the inter-
polation problem (interpolates the function f at the n distinct points
X1 5 X2 5000 X OfX)

Thus, to solve the interpolation problem, it is enough to prove that such
an n-linear operator exists. It would actually suffice to prove the existence of
a family {L,, L,,..., L,} of n-linear operators having the property that
[wi (x)] L exists for i = 1, 2,..., n, where wy(x) = L(X — X1, X — Xg you., X — X,,).
If this were the case, we could take

n

Y = 3 )t e

i=1 (x — x)

as our interpolating polynomial. We shall prove the existence of such a
family of L,’s.

THEOREM 4.2. Let x;, X, ,..., X, be distinct points of a Banach space X.
Then for each i =1, 2,...,n there exists an n-linear operator L, for which
[w,(x)] ™ exists, where

Wix) = L(x — X1, X — Xg 5000y X — Xp).

Furthermore, the L;’s can be chosen so that w;'(x;) = I, where I is the identity
operator in L[ X].

Proof. We start with i = 1. We must produce an r-linear operator L,
for which w,'(x;) exists and is nonsingular, where

Wi(x) = Li(Xx — Xy, X — Xg 5000y X — Xp).

640/4/4-6
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Recall that if such an L, exists, then

W) = i

x — x1) = O1wy(xy)

= Ll(.a X1 — Xg 3 Xy = X3 seeny xl\-—- x,,),
which belongs to Z[X]. Also, L, : X*1— Z[X]. With this in mind, let

Xy; = span{x; — x;}. Since each X;;, (j=2,3,...,n) is one-dimensional,
there exist continuous projections P,; of X onto X;; . Define

Ty Xio X Xag X = X Xp = L[X]
by linearity, through the equation
Ti(xy — Xg, X1 — Xg youry X1 — X)) = L
Then T is a bounded (continuous), (n — 1)-linear operator in

LlXie X Xiz X = X Xy, Y]
That is,

I T1(‘12(x1 — X3), @3(Xy — Xg)serr, An(Xy — Xy)|
= || Qo8 **" anT1(x1 — Xg, X1 — Xgyeers Xp — Xyl
= |axdsra,| |1
1

= 1% — % 1% — Xl || X1 — X | | @y, — x) || =+ | @n(xs — xA) |,

so that || Ty 1 = 1/l x; — X 1l %, — x5l - [} %, — X |-
We extend T, to a continuous, (n — 1)-linear operator 7, : X** — Z,[X]
through the projections Py; . That is, we define

Ti( Yy Vg s0ees Yn1) = Tl(PlzJ’1 » Pia¥a ses Pin¥ny)-

Since the projections P;; are linear and continuous, it follows that T is
(n — 1)-linear and continuous. In particular, the map P,

P:Xn_l——>X12 X Xl3 K oo X Xln

given by P(ya, Y3 5.0y Yn) = (P1aVz > P13 Vs 5o P1nyn) is continuous, so that
the composition T4 o P = Ty, is continuous.
Now define the n-linear operator L, by

Ll(yl 3 Vo seees yn) = [Tl(y2 s Vg seens yn)](yl)
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The n-linearity of L, follows directly from the (n — 1)-linearity of 7; and
the fact that 7 is linear and operator-valued. The boundedness of T; is also
apparent. If Py, y. = a[(x; — x)/ll x; — xi. [|], then || Py || = | a4y |. Thus,

Li(P1s Y2 seees Yot s Vi)

= [Ty(y2, Y3 5eees YY) = [Tl(Pl2y2 s P13z sees Prayo)l(1)
_ ay - ay - ay,
[xp = Xl -1l Xg — xall =~ 1 X1 — Xpl}

[Tl(xl — Xg 5oy X1 — Xp) (31

B ay - a; - ay, )
ey — Xl 1l Xy — X3l == fl Xy — Xal t
Therefore, if X = 1/|| x; — x5 || -l x; — x5 -+ {| x; — x,, ||, then

| Ly(¥15 Yo s V)l = Klay | | @g| - [ an [l 1]
= K[| Pyl | Pigyall o [l Prayaull - 1l
<Kyl -yl Ilyal,
since each Py, is a projection and || Py y || = || Puell - 1 ¥ |I-

Now let wy(x) = Li(x — x; , X — X3 ,..., X — X,,). Since L, is a bounded,
n-linear operator, wy(x) is differentiable and

w(xy)
(x—xp
= Ly, X1 — Xa, X) — Xy 5eeey X4 — Xp)
= T3(x1 — Xa, X1 — X3 5000y X3 — Xp)
=17

wy' () =

Thus w,’(x;) is a non-singular, linear operator.
A similar line of argument proves the existence, for each i =1, 2,...; n,
of an n-linear operator L; for which w;'(x;) = I, where

Wix) = Lix — X3, X — X3 4000y X — Xp).

This completes the proof of the theorem.
As a direct result of Theorem 4.2 we have

THEOREM 4.3. The interpolation problem can always be solved by a
polynomial y(x) of degree (n — 1) having a Lagrange representation

yo) = ﬁli(x) o,
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where  [(x) = [w/(x)]7t wi(x)/(x — x;) = [w/(x)] ™ Owi(x) and wyix) =
L(x — Xy ,X — Xg,..., X — X,,) for appropriately chosen n-linear operators
L, Ly,.,L,.

In the event X is a Hilbert space with inner product (x, y), Theorem 4.2
also yields a representation theorem. Consider the projection P;; of X
onto X;; given in the proof of Theorem 4.2. If X is a Hilbert space, then

Y. == . XI — xj xl — xj
Py, (J’a Ty — x, ||) % — x; ]|
Thus

o (Pas X — X9) (Y3, Xu — Xg) (s X — X))
Baesyero v = =R T — T — LY

In particular, since w,'(x,) = I,

o w;(x)
hx) = 1o & — 1)

= Li("yX — X, X — Xg 4000y X — Xp)
— (x_xzaxl_xa)'(x_x3’x1*x3)"'(x—xnsxl—xn)l
% — X |- [l g — X3 [P oo | X3 — X, [P

Analogously, one can prove that

n

1) = [ﬁ (o — xg, %, — xk)] [n P n]‘lr.
by pury

Thus we arrive at
THEOREM 4.4. Let X be a Hilbert space with inner product (x,y) and let

€1, Ca 5.y Cy be points of X. Then, for any distinct points Xy , Xg ,..., X, 0f X,
the polynomial y(x) of degree n — 1, given by

y(x) = i mx) c

i=1 ﬂz(xz) v

where

n
m(X) = H (x — Xz, X; — Xg),
KA
satisfies y(x;) = ¢;, i = 1,2,...,n.

This theorem is evident by inspection; however, it is interesting to note
how it followed naturally from the theory of Theorems 4.2 and 4.3.
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5. HERMITE INTERPOLATION IN BANACH SPACES

Recall the classical Hermite polynomial y(x) of degree (2n — 1) which
interpolates a real-valued function f of a real variable at the n distinct points
X1, Xy ,..., X, and for which y'(x) interpolates f' at these points. This y(x)
is given by the formula

Y = ¥ L) F) + ) G

where Hy(x) = [1 — 21/(x)(x — x;)] LA(x), and H(x) = (x — x;) [ (x). Here
I(x) is the polynomial w(x)/w'(x;)(x — x;) occurring in the classical Lagrange
formula, and w(x) = (x — x))(x — x,) - (x — x,,). It follows that

H{x;) = 8;; = H/(xy),
and
Hi/(Xj) == 0 == Hi(x_j), fOI‘ i, ] = ], 2,..., n.

Now suppose X is a Banach space and f is a function from X into X
which has a continuous Fréchet derivative at » distinct points Xy , X, ,..., X,
of X. Referring to Theorem 4.2, let I(x) = [w,/(x)]* wi(x)/(x — x,) =
[w"(x)122;w(x). Since I,(x) is linear and operator-valued, /,*(x) = /;(x) o /(x),
being the composition of two linear operators, is itself linear and operator-
valued. Furthermore, [, : X — Z[X, Z[X]] so that [[/(x)](y) is linear and
operator-valued. It is thus obvious that, for each x e X, [/(x;)(x — x,) is
linear and operator-valued. We now define the Banach space analog of the
above function H,(x) to be the linear operator-valued function on X:

Hy(x) = [I — 2I/(x;)(x — x)] [3(x),
where [ is the identity in £ [X]. Since /(x;) = 8,,1, it is evident that
Hi(x;) = 8, o))

Furthermore, we can show that H,'(x;) = 0, the zero linear operator from
X to Z[X], for i, j =1, 2,...,n. A proof of this requires some basic facts
about Fréchet derivatives [5].

If 4 is a linear operator from X into Y, then 4’'(x) = 4 for all xe X. If
F:X— Yand F(x) = L,, aconstant, for all x € X, then F'(x) = 0 € H[X, Y]
for all xe X. Let X, Y and Z be Banach spaces, and let F: X — Y and
G : Y — Z be functions such that F is differentiable at x, and G is differen-
tiable at y, == F(x,). Then GF is differentiable at x,, and (GF)'(x,) =
G'(yy) F'(xy). In particular, if G is linear, (GF)'(x,) = GF'(x,). Finally,
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LemMMA 5.1. Let A and B be functions from X into £[X] which are bounded,
linear and operator-valued. If both A and B are differentiable at x, and if
F(x) = A(x) B(x), then

F'(xo)(x) = A(x) B'(xo)(x) + A'(x)(x) B(xo).

Proof. The proof follows directly from the continuity of 4 and B at x,
and the definition of the Fréchet derivative.

Now let A,(x) = I-2L/(x)(x — x;), B(x) = [2(x). Then 4,/(x,) = —2I/(x,)
since I and —2/;(x;)(x,) are constant and /;(x;) is a linear operator. Using
Lemma 5.1 we see that

B (x)(x) = Ii(x;) 1 ()(0) + 1 (x;)(x) 1i(x)
so that
v _ (0 BIX] i A
B/(e(x) = =21 (x,)(x) if j=1i
But H(x) = A,(x) B{x) so that, invoking again Lemma 5.1,

Hi'(x;)(x) = A/ (x;)(x) By(x;) + Ai(x;) B (x;)(x)
= =26 (x)(x) I2(x;) + I — 21/ (x)(x; — x3)] B (x;)(x)
= =2 (x;)(x) 8,1
+ [ — 2L (e)Ce; — x)I(851) 1 () (x) + & (x;)(x)(S4;:1)]
_ (0e AlX] if j+#i
TR (x)(x) — 2 (x)(x) = 0e LX) if j=i

That is, H/(x,) = 0 e Z[X, Z[X]] for all i, j = 1,2,..., n.

If Hy(x) were a polynomial of degree 2n — 1 from X into X for which
Hy(x)=0foralli j=1,2,.,n, and for which H,/(x;) = 8,1, then

Y0 = 3 HC) £ + e B0} @

would be a polynomial of degree 2n — 1 interpolating f at x;, X5 ,..., X5 ,
with y’ interpolating f’ at these points. This follows directly from

V) = 3 U ) + 1) L)

Note that, since Hi(x) € X and f'(x;) € Z[X], f'(x;,) must precede H,(x) in
formula (2). Looking at the proof of Theorem 4.2, we find it can be readily
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adapted to produce a (2n — 1)-linear operator L,, for each i =1, 2,..., ,
for which [w;'(x;)]! exists and equals /, where

Wilx) = LiX — X1, X — X1, X — Xp 3 X — X 5000y X = X 4000y X — Xp 3 X == Xp)
= L{(x — xp% (¥ — X5)%e; (X — X)suee, (¥ — Xp)%).
It follows easily that
H(x) = [w/(x)It wi(x) = wy(x)
obeys the following relations:
Hi{x) =0 forall ij=1,2,..,n,
H/(x;) = 8;1.

Thus we arrive at

THEOREM 5.2. Let X, X, ,..., X, be distinct points of a Banach space X
and let f: X — X be differentiable at x,, x5 ,..., x,. Then there exists a
polynomial y of degree (2n — 1),

Y0) = X AH0) 1) + () Lo, ©

which interpolates f at x,, Xy ,..., Xn , With y'(x) interpolating ' at these
points. Furthermore,

Hi(x) = [I — 2l (x)(x — x;)] LA(x), and Hz(x) = [w;/'(x)]™* wi(x),

where wi(x) = L{(x — x)% (x — X)%..., (x — X)..., (X — Xx,)%), L, being an
appropriately chosen (2n — 1)-linear operator. I is the identity in £[X].

In the event X is a Hilbert space, we can obtain a simple representation
of y(x) in terms of inner products, First, one can show

72(x)

B = 2ot

(x —x;), where m(x) = J] (x — xp,x; — x)
ki
and (,) denotes inner product. Then, since /;(x) = m,(x)/7(x;) I, it follows

upon differentiation that

KO)y) = 3, i) (9 x — %)

= x5, % — x5) milx)

j=1
L
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Thus
, 2o — X, X% — Xp)
l,x,x—x,x te 7t jI
(i) ) ,Z::l(x_xj,xi_xj)
it
and

. 5 =X, X — x) | mAX)
Hix) = [1 - ,-Z=:1 (x — x5, x; — x;) } m2(x;) L
S

Therefore, we arrive at

THEOREM 5.3. Let X be a Hilbert space with inner product (x, y) and let

X1 5 X 5oy Xy, e distinct points of X. Then the polynomial of degree 2n — 1

given by
Y@ = 3 H 10) + 1) Ao
where
. o (x—x,x—x) | 7fx)
Hix) = [1 N :Z=:1 (x —x;, x; — x5) ] m2(x) !
i%i
and

interpolates the function [ X — X, while y' interpolates f' at x, , x5 ,..., X, .

[ S

REFERENCES

. PHiLIP J. DAvis, “Interpolation and Approximation,” Blaisdell, New York, 1956.
. MAHLON M. Day, “Normed Linear Spaces,” Springer-Verlag, Berlin, 1962.
. M. K. Gavurin, On k-ple operators in Banach spaces, Dokl. Akad. Nauk SSSR 22

(1939), 547-51.

. F. B. HiLDEBRAND, ‘“‘Introduction to Numerical Analysis,” McGraw-Hill, New York,

1956.

. L. V. KanToroviCcH AND G. P. Axkirov, “Functional Analysis in Normed Spaces,”

MacMillan, New York, 1964.

. P. M. PRENTER, A Weierstrass theorem for real separable Hilbert spaces, J. Approxima-

tion Theory 3 (1970), 341-351.

. P. M. PrENTER, Matrix Representations of Polynomial Operators, MRC Technical

Report # 929, U. of Wisconsin, August, 1968.



