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Let 1 map a Banach space X into itself, and let X, , X 2 , ... , X n be distinct points
of X. Then there exists a polynomial y(x) of degree (n - 1) which interpolates
1 at these points. Furthermore, y(x) has a Lagrange representation

.. w(x)
y(x) = ~, [w/(x')l-l (x ~ Xi) j(x,),

where w,(x) = L,(x - X, , X - X2 , ... , X - x n ), w/(x,) is the first Frechet deriva­
tive of Wi at Xi , and L, , i = 1, 2,..., n, is an appropriately chosen n-linear operator.
In an analogous manner, an Hermite polynomial ji(x) of degree (2n - 1) is
derived, which interpolates 1 and l' at Xl , X 2 , ... , X n • Finally, if X is a Hilbert
space, the polynomials y(x) and ji(x) are shown to have simple representations
in terms of inner products.

I. INTRODUCTION

Let X and Y be Banach spaces and let! be a function mapping X into Y.
If X and Yare the real line RI, the classical Lagrange and Hermite inter­
polation problems are, respectively, to find a polynomial y(x) of degree
(n - I) which interpolates! at n given distinct points Xl , X 2 , ... , X n , and to
find a polynomial )i(x) of degree (2n - 1) which interpolates!at Xl , X 2 , ... , X n

while ji' interpolates l' at these points. In this paper we solve the Banach
space analogs of these two problems, using polynomial operators. That is,
we exhibit polynomials y(x) and ji(x), of degrees n - 1 and 2n - I, such
that y interpolates! at the n given distinct points Xl , X 2 , ... , X n , )i inter­
polates f, and )if interpolates l' at these points. In particular, we show that
y(x) has a Lagrange representation

n Wi(X)
y(x) = I [W;'(Xi)]-1 (x _ Xi) l(Xi),
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where W/(Xi) is the Frechet derivative of Wi at Xi , and Wi(X) is the n-th degree
polynomial

Li being an appropriately chosen n-linear operator. In the event X is a
Hilbert space, the polynomials y(x) and j!(x) are shown to have simple
representations in terms of inner products.

2. POLYNOMIALS IN A LINEAR SPACE

Let X be a linear space over the field of real (complex) numbers. For each
k = 1,2,... , let Xk denote the direct product

XxXx···xx.
k times

A k-linear operator M on X, is a function on Xk into a linear space Y which
is linear and homogeneous in each of its arguments separately. That is, for
each i = 1,2,... , k,

M(xl , X2 , ••. , Xi + Yi ,... , Xk)

= M(Xl , X2 , ... , Xi , ... , Xk) + M(Xl , X2 , ... , Yi ,... , Yk),

and

M(xl , X2 , ... , aXi ,... , x n) = aM(xl , X2 , ... , Xi , ... , x n).

A O-linear operator L o , on X, is a constant function. That is, for some fixed
Y E Y, Lox = Y for all X E X. We shall identify a O-linear operator Lo with
its range so that Lox = Lo for all X E X. In the event Xl = X2 = ... = Xk = x
we shall adopt the notation

where M is a k-linear operator.
For k = 0, 1,2,... , n, let Lk be a k-linear operator on X. Then the operator

P on X into Y given by

P(x) = Lo+ Llx + L 2x 2 + ... + Lnxn

is called a polynomial of degree n on X.
Let 2 n [X, Y], n = 0, 1,2,... , denote the set of n-linear operators on X

into Y. If X = Y, we shall simply write 2 n [X]; we shall identify 2 o[X]
with X.
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If L E £'n[X, Y], n > I, then for each x E X, L(x) E £'n-I[X, Y] is the
(n - I)-linear operator defined by

(L(x))(x2 , X3 , ••• , x n) = L(x, X2 , X3 , ••• , x n).

In general, if n > k ;?: 1, then for each

is the (n - k)-linear operator defined by

If Lis n-linear (n > 1), we shall let OiL denote the (n - i)-linear operator
on X into ~[X, Y] defined by

where

In general, n-Iinear operators are not symmetric. That is, it need not be true
that

for all permutations (iI' i2 ,... , in) of (1, 2, ... , n). For this reason, in general,

Now let L be any n-linear operator and let Xl , X2 , ••• , Xn be any points
of X. We define a function w on X into Y by

w(x) = L(x - Xl , X - X2 , ••• , X - x n).

Clearly, w(x) is a polynomial

Lnxn + Ln_Ixn- 1 + ... + Llx + Lo

of degree n on X, where Ln = L, and Lo = (_l)n L(xi , X2 , ••• , x n). For
example, if L is bilinear,

L(x - Xl , X - x 2) = Lx2 - L(xi , X) - L(x, Xl) + L(xi , x 2).

Thus L 2 = L, Lo = L(xl , x 2), and L I = -L(xl , .) - L(', x 2).

An n-1inear operator L is said to be bounded provided there exists a
constant M > 0 for which

II L(xi , X2 , ••• , xn)11 :S;; M II Xl II . II x211 ..... II Xn II.
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Analogously to the I-linear case, it can be proved that an n-linear operator
L is bounded if and only if it is continuous. Continuity of L is defined in
terms of the product topology on xn. If we define

II L II = inf{M : II L(xi , X 2 , .•. , xn)11 ~ M II Xl II . II x2 11 ..... II X n II},

then

II L II = sup{11 L(xl , X2 , ... , x n) : II Xi II = 1, i = 1,2,... , n}. (I)

Clearly, whenever Y is a Banach space, 2'n[X, Y], with the norm (I), is also
a Banach space.

Finally, it will be useful to note [3] that 2'n[X, Y] is isometric to
~[X, 2'n_I[X)), which is isometric to ~[X, ~[X, ~[X,... , ~[X, Y] ... ]]].

3. FRECHET DERIVATIVES OF OPERATORS

Let f be a function mapping an open subset V of a Banach space X into
a Banach space Y. Let X o E V. If there exists a linear operator U E ~[X, Y]
such that

Ilf(xo + ..::::Ix) - f(xo) - U(..::::Ix)11 = o(ll..::::Ix II),

then U = f'(xo) is called the Frechet derivative off at X o . Equivalently,

U(x) = lim f(xo + tx) - f(xo) ,
/-'0 t

where the convergence is uniform on the sphere {x: II x II = I}. It follows
from this definition that if L is a bounded, n-linear operator on X, and
f(x) = Lxn, then f'(x) = L:;~l OiLxn-l. In particular, if L is bilinear and
f(x) = Lx2, then f'(x) = L(x, .) + L(·, x). If L is symmetric, then, clearly,
f'(x) = nLxn- l .

We shall need the derivative of w. Let L be n-linear and let Xl , X 2 , ... , X n

be points of X. We let 0iW or w/(x - Xi) denote the operator on X into
~[X, Y] defined by

OiW(Z) = L(z - Xl ,z - X2 , ... , Z - Xi-I, " Z - Xi+! ,... , Z - Xn ).

We set

OiW(Z) = (W/(X - Xi))(Z) = W(Z)/(X - Xi)'

It should be noted that the operator w/(x - Xi) is completely independent of
the X in the denominator; the denominator (x - Xi) is purely symbolic.
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THEOREM 3.1. Let L be a bounded, n-linear operator. Let Xl , X2 , ... , Xn E X,
and set

w(X) = L(x - Xl , X - X2 , ... , X - x n).

Then w'(xo) = L7~1 w(xo)/(x - Xi) and, in particular, w'(xi) = W(Xi)/(X - Xi) =
OiW(Xi)'

Proof Let Xo be a fixed point of X. Then, using the multilineanty and
boundedness of L,

= II L(xo - Xl + Llx, Xo - X2 + Llx, ... , Xo - Xn + Llx)

- I. L(xo - Xl , ... , Xo- Xi-I' Llx, Xo - Xi+! ,... , Xo- Xn ) II
,=1

n

,s; L M k II Llx Ilk = 0(11 Llx ID,
k=2

where each M k is a positive constant arising from II L II and from the norms
II X o - Xi II, i = 1,2,... , n.

One can speak also of higher order Frechet derivatives. Iff: X -- Y and
if l' exists on an open neighborhood V of Xo in X, then f"(xo) = (f')'(xo)
is a linear operator on X into 2;.[X, Y] for which

1l1'(xo+ Llx) - 1'(xo) - f"(xo)(Llx)11 = 0(11 Llx ID.

Thus, f"(xo) E 2;.[X, 2;.[X, Y]] and, since 2;.[X, 2;.[X, Y]] is isometric to
2 2 [X, Y], it follows that f"(xo) can be considered a bilinear operator on X
into Y which is usually not symmetric. In general, jlnl(xo), the n-th Frechet
derivative of fat X o , is a linear operator on X into 2 n _ l [X, Y]; so that
jlnl(xo) can be considered as belonging to 2 n [X, Y].

Some examples of Frechet derivatives are instructive. Let X = Y = Rn,
the (real) Euclidean n-space. Then, iff: X -- Yand for (Xl' x 2 , ... , x n ) E X,
j(Xl , X2 , ... , Xn) = (Yl ,Y2 ,... , Yn), where Yi = h(xl , X2 , ... , xn), i = 1,2,... , n,
eachh is a real-valued function of n real variables. It can then be shown that
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if each /; has continuous first partial derivatives on some open set V in X,
then f'(x) exists on V and is given by the matrix

f'(X) =

8f
8x2

8f2 (x)
8x2

i,j = 1,2,... , n,

which is the gradient offat x. Analogously, if each/; has continuous second
partials on some neighborhood U of x, then f"(x) is given by the three-way
matrix

f"(X) = 8~(x),
8xj 8xk

i, j, k = 1, 2, ... , n,

which is the Hessian off at x.
More generally, one can show that if L is a bounded, n-linear operator

on X, then DkJ(X) is a bounded, k-linear operator on X.

4. THE INTERPOLAnON PROBLEM - EXISTENCE

Let CI , C2 , ... , Cn be points of a Banach space X. The interpolation problem
is that of finding, for each sequence {Xl' X 2 , ... , X n } of distinct points of X,
a polynomial operator p which interpolates {ci , C2 , ... , cn} at {Xl' X 2 , ... , X n},
so that p(xi ) = Ci' We shall prove that there always exists a polynomial of
degree (n - 1) which solves the interpolation problem.

To this end, let L be a bounded n-linear operator in .Pn[X); let Xl , X 2 , ... , X n
be distinct points of X and let w(x) = L(x - Xl ,X - X2 , ... , X - x n ). Then
w is a polynomial of degree n mapping X into X, and

w(X)
( ) = 8iw(x) = L(x - Xl , X - X2 , ... , X - Xi-I' X - Xi+l , ... , X - Xn),
X - Xi

is a polynomial of degree (n - 1) which maps X into ~[X). We have shown
that w'(x) = L:~l w(x)/(x - Xi)' so that W'(Xi) = W(Xi)/(X - Xi) = 8iw(Xi)
is a linear operator. Thus, should W'(Xi) be nonsingular for i = 1,2,... , n,
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then since li(x) = [W'(Xi)]-1 w(x)j(x - Xi), Ii would be a linear and operator­
valued function having the property

l;(xi) = Oiil.

Furthermore, for each Xo E X, it is easily seen that [li(X)](XO) = Ii(X) Xo is a
polynomial of degree (n - 1). That is, we have proved

THEOREM 4.1. If there exists an n-linear operator L such that [W'(Xi)]-1
exists for each i = 1,2,... , n, where

w(x) = L(x - Xl , X - X2 , ••• , X - Xn),

then the Lagrange polynomial y(x) of degree (n - 1) given by

where Ii(X) = [W'(Xi)]-1 w(x)j(x - Xi) = [W'(Xi)]-1 OiW(X), solves the inter­
polation problem (interpolates the function f at the n distinct points
Xl , X2 , ••• , Xn of X).

Thus, to solve the interpolation problem, it is enough to prove that such
an n-linear operator exists. It would actually suffice to prove the existence of
a family {LI , L 2 , ... , Ln } of n-linear operators having the property that
[w;'(Xi)]-1 exists for i = 1,2,... , n, where w;{x) = Li(x - Xl' X - X2 , ... , X - x n).

If this were the case, we could take

n W (x)
y(X) = i~ [W;'(Xi)]-1 (x ~ Xi) (Ci)

as our interpolating polynomial. We shall prove the existence of such a
family of L;'s.

THEOREM 4.2. Let Xl , X2 , ... , Xn be distinct points of a Banach space X.
Then for each i = 1,2,... , n there exists an n-linear operator Li for which
[W;'(Xi)]-1 exists, where

Wi(X) = Li(x - Xl , X - X2 , ••• , X - x n ).

Furthermore, the L;'s can be chosen so that W;'(Xi) = I, where I is the identity
operator in ~[X].

Proof We start with i = 1. We must produce an n-linear operator L I

for which WI' (Xl) exists and is nonsingular, where

wl(x) = LI(x - Xl , X - X2 , ... , X - x n).



426 PRENTER

Recall that if such an ~ exists, then

'() WI(Xl) "()
WI Xl = ( ) = ulWl Xl

X - Xl

= L l (', Xl - X2 ,Xl - X 3 , •.. , Xl - X n),

which belongs to ~[X]. Also, L l : xn-l -- ~[X]. With this in mind, let
Xli = span{xl - Xi}' Since each Xli (j = 2, 3,... , n) is one-dimensional,
there exist continuous projections Pli of X onto Xli . Define

by linearity, through the equation

Then 1'1 is a bounded (continuous), (n - I)-linear operator in

~[X12 X X 13 X ... X X ln , Y].

That is,

II 1'l(02(Xl - x 2), 03(Xl - x 3),· .. , On(Xl - xn)11

= II °2°3 ••• OnTl(Xl - X 2 , Xl - X 3 , ... , Xl - X n)\\

= I°2°3 ... On I . II I II
1

II Xl - X
2

II1I Xl - x
3

11 ... II Xl - X
n

II II °l(Xl - X2) II ... II On(Xl - X n) II,

SO that II 1'1 II = 1/11 Xl - x2 1111 Xl - x3 11 ... II Xl - X n II·
We extend 1'1 to a continuous, (n - I)-linear operator Tl : xn-l __ ~[X]

through the projections Pli . That is, we define

Since the projections Pli are linear and continuous, it follows that Tl is
(n - I)-linear and continuous. In particular, the map P, .

given by P(Y2 , Y3 , ... , Yn) = (P12 Y2 , P 13 Y2 ,..., PlnYn) is continuous, so that
the composition 1'1 0 P = Tl , is continuous.

Now define the n-linear operator L l by
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The n-linearity of Ll follows directly from the (n - I)-linearity of Tl and
the fact that Tl is linear and operator-valued. The boundedness of Tl is also
apparent. If PlkYk = ak[(xl - Xk)/11 Xl - Xk II], then II PlkYk II = I ak I· Thus,

Ll(YI ,Y2 ,... , Yn-l ,Yn)

= [Tl(Y2, Y3 ,... , Yn)](YI) = [fl(P12Y2, P13Y3 ,... , PlnYn)](Yl)
a2 . a3 ... an -

II II II II II II
[Tl(Xl - X2 ,... , Xl - Xn)](Yl)

Xl - X2 . Xl - X3 .. . Xl - Xn
a2 . a3 ... an

Therefore, if K = 1/11 Xl - x 211 . II Xl - x 311 ... II Xl - X n II, then

II Ll(Yl , Y2 ,... , Yn)11 = K I al I . Ia2 I ... I an III Yl II
= K· II P12 Y2 II . II P13 Y311 ... II PlnYn II . II YIII
~ K II Yl II . II Y211 ... II Yn II,

since each Plk is a projection and II PlkY II = II Plk II . II Y II·
Now let wl(x) = Ll(x - Xl , X - X2 ,... , X - x n). Since Ll is a bounded,

n-linear operator, wl(x) is differentiable and

'( ) _ W(Xl )
WI Xl - ( )

X - Xl

= Ll(·, Xl - X2 , Xl - X3 ,... , Xl - Xn)

= fl(Xl - X2 , Xl - X3 ,... , Xl - Xn)

=1

Thus Wl/(Xl ) is a non-singular, linear operator.
A similar line of argument proves the existence, for each i = 1,2,... , n,

of an n-linear operator L; for which w;'(x;) = I, where

This completes the proof of the theorem.
As a direct result of Theorem 4.2 we have

THEOREM 4.3. The interpolation problem can always be solved by a
polynomial y(x) of degree (n - 1) having a Lagrange representation

n

y(x) = L l;(x) Ci ,
;=1
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where li(x) = [W;'(Xi)]-l w;(x)/(x ~ Xi) = [W;'(Xi)]-lOiW;(X) and Wi(X) =
L;(x - Xl , X - X2 , •.• , X - xn) for appropriately chosen n-linear operators
Ll , L 2 '00" Ln .

In the event X is a Hilbert space with inner product (x, y), Theorem 4.2
also yields a representation theorem. Consider the projection Pv of X
onto Xv given in the proof of Theorem 4.2. If X is a Hilbert space, then

Thus

L ( ) (Y2 , Xl - x 2) • (Ya , Xl - xa) (Yn , Xl - xn) ( )
1 Y1 , Y2 '00" Yn = II Xl _ X

2
11 2 . II Xl _ xa l1 2 II Xl _ Xn 112 I Yl .

In particular, since WI'(Xl) = I,

I (x) = 10 Wl(X)
1 (X - Xl)

= Ll(·, X - X2 , X - X a '00" X - Xn)
= (X - X2 , Xl - X2) • (X - Xa , Xl - Xa) ... (X - Xn ,Xl - Xn) I

II Xl - x2 11 2 '11 Xl - xa l1 2 ... II Xl - Xn 112 •

Analogously, one can prove that

I;(x) = [Dl (x - Xk, Xj - Xk)] [fi II Xj - Xk II]-lf.
k "I'j Ie "I'j

Thus we arrive at

THEOREM 4.4. Let X be a Hilbert space with inner product (x, y) and let
Cl , C2 , ... , Cn be points of X. Then, for any distinct points Xl , X2 , ... , Xn of X,
the polynomial y(x) of degree n - 1, given by

~ 7T;(X)
y(x) = L. .(x.) Ci,

i=l '1T1, t

where
n

7Ti(X) = n (x - Xk , Xi - Xk),
k~l

k"l'i

satisfies Y(Xi) = Ci, i = 1,2,... , n.

This theorem is evident by inspection; however, it is interesting to note
how it followed naturally from the theory of Theorems 4.2 and 4.3.



LAGRANGE AND HERMITE INTERPOLATION IN BANACH SPACES 429

5. HERMITE INTERPOLATION IN BANACH SPACES

Recall the classical Hermite polynomial y(x) of degree (2n - 1) which
interpolates a real-valued function! of a real variable at the n distinct points
Xl' X2 , ... , Xn and for which y'(x) interpolates l' at these points. This y(x)
is given by the formula

n

y(x) = I {Hi(x)f(Xi) + ll;(x)l'(xi)}'
i=l

where H;(x) = [1 - 21;'(xi)(x - x;)] ll(x), and Hi(x) = (x - Xi) li2(x). Here
Ii(X) is the polynomial w(x)/W'(Xi)(X - Xi) occurring in the classical Lagrange
formula, and w(x) = (x - xl)(x - x2) ... (x - x n). It follows that

H;(xj) = Oij = H;'(xj),

and

for i, j = 1,2,... ,11.

Now suppose X is a Banach space and! is a function from X into X
which has a continuous Frechet derivative at n distinct points Xl , X2 , ... , X n

of X. Referring to Theorem 4.2, let Ii(X) = [W;'(X;)]-l W;(x)/(X - Xi) =

[W;'(Xi)]-lOiW;(X). Since li(x) is linear and operator-valued, 112(x) = li(x) 0 li(x),
being the composition of two linear operators, is itself linear and operator­
valued. Furthermore, I;' : X -+ ~[X, 2"l[X]] so that [l;'(x)](y) is linear and
operator-valued. It is thus obvious that, for each X E X, l;'(xi)(x - Xi) is
linear and operator-valued. We now define the Banach space analog of the
above function H;(x) to be the linear operator-valued function on X:

Hi(x) = [1 - 21;'(xi)(x - Xi)] li2(x),

where 1 is the identity in ~[X]. Since l;(xj) = oil, it is evident that

H;(xj) = oil. (1)

Furthermore, we can show that H;'(xj) = 0, the zero linear operator from
X to 2"l[X], for i, j = 1,2,... ,11. A proof of this requires some basic facts
about Frechet derivatives [5].

If A is a linear operator from X into Y, then A'(x) = A for all X E X. If
F: X -+ YandF(x) = L o , a constant, for all x E X, thenF'(x) = 0 E ~[X, Y]
for all x E X. Let X, Y and Z be Banach spaces, and let F : X -+ Y and
G : Y -+ Z be functions such that F is differentiable at X o and G is differen­
tiable at Yo = F(xo). Then GF is differentiable at xo , and (GF)'(xo) =

G'(yo) F'(xo). In particular, if G is linear, (GF)'(xo) = GF'(xo)' Finally,
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LEMMA 5.1. Let A and B befunctionsfrom X into 2';. [X] which are bounded,
linear and operator-valued. If both A and B are differentiable at Xo and if
F(x) = A(x) B(x), then

F'(xo)(x) = A(xo) B'(xo)(x) + A'(xo)(x) B(xo).

Proof The proof follows directly from the continuity of A and B at Xo
and the definition of the Frechet derivative.

Now let Ai(x) = 1- 21/(xi)(x - Xi), B(x) = li2(x). Then A/(xo) = -21/(xi)
since I and -21;'(xi)(xi) are constant and l/(xi) is a linear operator. Using
Lemma 5.1 we see that

so that

')( 10 E .!l'1[X] if j =Fe i,
B i (Xj x) = 2I'()() 'f' _ .

- i Xi X I ] - I.

But Hi(x) = A;(x) Bi(x) so that, invoking again Lemma 5.1,

H/(xj)(x) = A/(xj)(x) Bi(xj) + A;(xj) B;'(xj)(x)

= -21/(xi)(x) li2(xj) + [I - 21/(xi)(Xj - Xi)] B/(xj)(x)

= -21;'(xi)(x) ouI

+ [I - 21/(xi)(xi - Xj)][(OijI) l;'(xi)(x) + l/(xj)(x)(oi/)]

\0 E 2';.[X] if j =Fe i,
= /21/(xi)(x) - 21;'(xi)(x) = 0 E 2';.[X] if j = i.

That is, H/(xj) = 0 E 2';.[X, 2';.[X]] for all i, j = 1,2,... , n.
If Hi(x) were a polynomial of degree 2n - 1 from X into X for which·

fl;(xj) = 0 for all i, j = 1,2,... , n, and for which H/(xj) = oil, then

n

y(x) = L {Hi(x) I (Xi) +1'(Xi) Hi(x)}
i~1

(2)

would be a polynomial of degree 2n - 1 interpolating f at Xl , X 2 , ..• , X n ,

with y' interpolating l' at these points. This follows directly from

n

y'(x) = L H/(X)f(Xi) +1'(Xi) H/(x).
i=1

Note that, since H;(x) E X and 1'(Xi) E 2';.[X], 1'(Xi) must precede Hi(x) in
formula (2). Looking at the proof of Theorem 4.2, we find it can be readily
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adapted to produce a (2n - I)-linear operator Li , for each i = 1,2,... , n,
for which [W;'(Xi)]-1 exists and equals I, where

Wi(X) = Lix - Xl , X - Xl , X - X2 , X - X2 , ... , X - Xi ,... , X - Xn , X - Xn)

= Li((x - XI)2, (X - x 2)2, ... , (X - Xi),"" (X - Xn)2).

It follows easily that

Hix) = [W;'(Xi)]-1 Wi(X) = Wi(X)

obeys the following relations:

Hixj) = 0 for all i,j = 1,2,... , n,

H;'(xj) = ouI.

Thus we arrive at

THEOREM 5.2. Let Xl , X2 , ... , Xn be distinct points of a Banach space X
and let f: X -- X be differentiable at Xl' X2 , ... , Xn • Then there exists a
polynomial y of degree (2n - 1),

n

y(x) = L {Hi(x)f(Xi) +1'(Xi) Hi(x)},
i~l

(3)

which interpolates f at Xl' X2 , ... , Xn , with y'(x) interpolating l' at these
points. Furthermore,

H;(x) = [I - 2/;'(xi)(x - Xi)] li2(x), and H;(x) = [W;'(Xi)]-1 Wi(X),

where wix) = Li((x - XI)2, (x - X2)2, ... , (x - Xi), ... , (X - Xn)2), Li being an
appropriately chosen (2n - I)-linear operator. I is the identity in 2';.[X].

In the event X is a Hilbert space, we can obtain a simple representation
of y(x) in terms of inner products. First, one can show

n

where 7Ti(X) = n (x - Xk , Xi - Xk)
k~l

k*i

and (,) denotes inner product. Then, since li(x) = 7Tix)/7T;(Xi) I, it follows
upon differentiation that

1'( )() ~ 7Ti(X) . (y, X - .Xj) I.iXy=L"
j~l (x - Xj , Xi - Xj) 7Ti(Xi)
j ori
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Thus

and

PRENTER

1;'(xi)(X - Xi) = f (X - Xi , Xi - Xj) I
j~l (x - Xj , Xi - Xj)
j ""i

Hi(x) = [1 _ ~.~nl (x - Xi , Xi - Xj) ] 7Ti2(X) I
, (x - Xj , Xi - Xj) 7T8xi) .
j""i

Therefore, we arrive at

THEOREM 5.3. Let X be a Hilbert space with inner product (x, y) and let
Xl , X 2 , ..• , X n be distinct points of X. Then the polynomial of degree 211 - 1
given by

n

y(x) = L {Hix)f(Xi) + 1'(Xi) Bi(x)},
i~l

where

Hi(x) = [1 _ ~.n~l (x - Xi , Xi - Xj) ] 7Ti2(X) I
, (x - Xj , Xi - Xj) 7Ti2(Xi)
j""i

and

interpolates the function f: X -- X, while y' interpolates l' at Xl , X 2 , ••• , X n •
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